Efficient layered density-based clustering of categorical data
نویسندگان
چکیده
منابع مشابه
Efficient layered density-based clustering of categorical data
A challenge involved in applying density-based clustering to categorical biomedical data is that the "cube" of attribute values has no ordering defined, making the search for dense subspaces slow. We propose the HIERDENC algorithm for hierarchical density-based clustering of categorical data, and a complementary index for searching for dense subspaces efficiently. The HIERDENC index is updated ...
متن کاملHierarchical Density-Based Clustering of Categorical Data and a Simplification
A challenge involved in applying density-based clustering to categorical datasets is that the ‘cube’ of attribute values has no ordering defined. We propose the HIERDENC algorithm for hierarchical densitybased clustering of categorical data. HIERDENC offers a basis for designing simpler clustering algorithms that balance the tradeoff of accuracy and speed. The characteristics of HIERDENC includ...
متن کاملClustering-Based Categorical Data Protection
The need of improving the privacy on public datasets is becoming more and more important because the number of public available datasets is growing very fast. This forced the continuous research to find better protection methods that prevent the disclosure of the entities or individuals in a dataset while preserving the data utility. In this paper we present a new approach for categorical data ...
متن کاملModel-based multidimensional clustering of categorical data
Existing models for cluster analysis typically consist of a number of attributes that describe the objects to be partitioned and one single latent variable that represents the clusters to be identified. When one analyzes data using such a model, one is looking for one way to cluster data that is jointly defined by all the attributes. In other words, one performs unidimensional clustering. This ...
متن کاملEfficient Anytime Density-based Clustering
Many clustering algorithms suffer from scalability problems on massive datasets and do not support any user interaction during runtime. To tackle these problems, anytime clustering algorithms are proposed. They produce a fast approximate result which is continuously refined during the further run. Also, they can be stopped or suspended anytime and provide an answer. In this paper, we propose a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Informatics
سال: 2009
ISSN: 1532-0464
DOI: 10.1016/j.jbi.2008.11.004